Estimation of high-dimensional change-points under a group sparsity structure
نویسندگان
چکیده
Change-points are a routine feature of ‘big data’ observed in the form high-dimensional data streams. In many such streams, component series possess group structures and it is natural to assume that changes only occur small number all groups. We propose new change point procedure, called groupInspect, exploits sparsity structure estimate projection direction so as aggregate information across successfully change-point mean series. prove estimated minimax optimal, up logarithmic factors, when sizes comparable order. Moreover, our theory provide strong guarantees on rate convergence location estimator. Numerical studies demonstrates competitive performance groupInspect wide range settings real example confirms practical usefulness procedure.
منابع مشابه
Estimation of Covariance Matrices under Sparsity Constraints
Discussion of “Minimax Estimation of Large Covariance Matrices under L1-Norm” by Tony Cai and Harrison Zhou. To appear in Statistica Sinica. Introduction. Estimation of covariance matrices in various norms is a critical issue that finds applications in a wide range of statistical problems, and especially in principal component analysis. It is well known that, without further assumptions, the em...
متن کاملdegradation of oil impregnated paper insulation under influence of repetitive fast high voltage impulses
در طی سالهای اخیراستفاده ازمنابع انرژی تجدید پذیر در شبکه های مدرن بنا به دلایل زیست محیطی و اقتصادی به طور گسترده استفاده شده است همچون نیروگاههای بادی و خورشیدی .ولتاژتولیدی این نیروگاهها اغلب به فرم dc می باشد وادوات الکترونیک قدرت به عنوان مبدل و پل بین شکل موج dc وac استفاده می شوند.این پروسه باعث ایجاد پالسهایی برروی شکل موج خروجی می شود که می تواند وارد تجهیزات قدرت همچون ترانسفورماتور ی...
15 صفحه اولSequential Detection and Estimation of Change-Points
In this report the problem of sequential detection and estimation of change-points is considered. The sense of this problem is as follows: in practice after raising an alarm signal about a change it is often required to divide the whole obtained sequential sample into subsamples of observations before and after an unknown change-point. In this report asymptotically optimal methods are proposed ...
متن کاملEstimation of Change Points in Panel Models
This paper studies a panel data regression setting, where a break occurs at a unknown common date. In this paper, we establish the consistency and rate of convergence of the change point estimator. The break date can be estimated consistently both in xed time horizon and large panels, which indicates that the structural change can be well detected even in short panels. Furthermore, the limitin...
متن کاملGroup Lasso Estimation of High-dimensional Covariance Matrices
In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic process corrupted by an additive noise. We propose to estimate the covariance matrix in a highdimensional setting under the assumption that the process has a sparse representation in a large dictionary of basis functions. Using a matrix regression model, we propose a new methodology for high-dimensiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2023
ISSN: ['1935-7524']
DOI: https://doi.org/10.1214/23-ejs2116